
Gibbs’ Question

If two phases differ only in that certain entirely similar particles
have changed places with one another, are they to be regarded as
identical or different phases? (Gibbs 1902, p. 187)

James Wills Gibbs’ Paradox and Indistinguishability February 9, 2023 21 / 46



Gibbs’ Question

If two phases differ only in that certain entirely similar particles
have changed places with one another, are they to be regarded as
identical or different phases? (Gibbs 1902, p. 187)

Phase?

James Wills Gibbs’ Paradox and Indistinguishability February 9, 2023 21 / 46



Gibbs’ Question

If two phases differ only in that certain entirely similar particles
have changed places with one another, are they to be regarded as
identical or different phases? (Gibbs 1902, p. 187)

Phase?

Changed places?

James Wills Gibbs’ Paradox and Indistinguishability February 9, 2023 21 / 46



Gibbs’ Question

If two phases differ only in that certain entirely similar particles
have changed places with one another, are they to be regarded as
identical or different phases? (Gibbs 1902, p. 187)

Phase?

Changed places?

entirely similar?
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Permutation Transformations

The 6N-dimensional phase space of a system of N point particles has
phase points s of the form of a 6N tuple:

s = ((r,p)1, ..., (r,p)N) (1)

where r = (rx , ry , rz) and p = (px , py , pz).
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s = ((r,p)1, ..., (r,p)N) (1)

where r = (rx , ry , rz) and p = (px , py , pz). Consider the family of
transformations {πij} for 1 ≤ i , j ≤ N such that, e.g.

π1N(s) := ((r,p)N , ..., (r,p)1). (2)
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Permutation Transformations

The 6N-dimensional phase space of a system of N point particles has
phase points s of the form of a 6N tuple:

s = ((r,p)1, ..., (r,p)N) (1)

where r = (rx , ry , rz) and p = (px , py , pz). Consider the family of
transformations {πij} for 1 ≤ i , j ≤ N such that, e.g.

π1N(s) := ((r,p)N , ..., (r,p)1). (2)

Interpretations:

Permutation of particle labels?

Permutation of particles among the states?

Permutation of states over particles.
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Simple Example

r

(a) s = (1,−1, 2, 1).

r

(b) π(s) = (2, 1, 1,−1).

Figure: Two states related by a permutation. In each case, there is one particle
with (r , p) = (1,−1) and another with (2, 1) and yet the states are represented
by two distinct points in the phase space. The black dot depicts the particle
represented by the first factor position and the white dot depicts the particle
represented by the second factor position.
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‘Indistinguishability’

Are the states represented by πij(s) and s, in some sense, equivalent?

Does it ‘matter’ which particle has which single particle state?

Gibbs answers:

If the particles are regarded as indistinguishable, it seems in ac-
cordance with the spirit of the statistical method to regard the
phases as identical. (Gibbs 1902)
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‘Indistinguishability’

Are the states represented by πij(s) and s, in some sense, equivalent?

Does it ‘matter’ which particle has which single particle state?

Gibbs answers:

If the particles are regarded as indistinguishable, it seems in ac-
cordance with the spirit of the statistical method to regard the
phases as identical. (Gibbs 1902)

indistinguishable?

statistical method?
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Two Positions

Regard the phases as representing one and the same physical state of
affairs:

The particles share all state-independent properties.

What should we do in this case? Is representational redundancy
worrying?

Regard the phases as representing distinct states of affairs:

If you think trajectories play a role in distinguishing the particles.
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Why is this important?

What harm can representational redundancy do?

When we start putting probability measures on the phase space.

If phase space over-represents, the probability measure over-counts.

We use probability measures to calculate expectation values of
physical quantities.

Relatedly (less obvious) this over-counting apparently leads to a
non-extensive entropy function in statistical mechanics.
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6N-dimensional phase space M fine-grained into cells of volume τ .

Coarse-grained into energy levels εs such that Ns particles are in
energy interval [εs , εs +∆εs ] and

!
Ns = N and

!
Nsεs = E .
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6N-dimensional phase space M fine-grained into cells of volume τ .

Coarse-grained into energy levels εs such that Ns particles are in
energy interval [εs , εs +∆εs ] and

!
Ns = N and

!
Nsεs = E .

The Boltzmann entropy is defined:

S = k lnW

where W is the volume in phase space corresponding to the
macrostate.
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The Problem: Canonical Statement

Setup:

6N-dimensional phase space M fine-grained into cells of volume τ .

Coarse-grained into energy levels εs such that Ns particles are in
energy interval [εs , εs +∆εs ] and

!
Ns = N and

!
Nsεs = E .

The Boltzmann entropy is defined:

S = k lnW

where W is the volume in phase space corresponding to the
macrostate.

Now we count the microstates.
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Non-extensive entropy
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Non-extensive entropy

WB =
N!

N1! . . .Ns ! . . .

"

s

CNs
s τ
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Non-extensive entropy

WB =
N!

N1! . . .Ns ! . . .

"

s

CNs
s τ

Take the logarithm and apply Stirling’s approximation: ln x! ≈ x ln x − x
for large x .
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Non-extensive entropy

WB =
N!

N1! . . .Ns ! . . .

"

s

CNs
s τ

Take the logarithm and apply Stirling’s approximation: ln x! ≈ x ln x − x
for large x . Then the entropy reads:

S = kN lnN + ...

Because of this first term, the entropy is clearly not extensive.
Divide W by N!? But what justification?
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The Orthodox Solution: Quantum Statistics
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The Orthodox Solution: Quantum Statistics

Bose-Einstein Statistics:

WBE =
"

s

(Ns + Cs − 1)!

Ns !(Cs − 1)!
(3)
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The Orthodox Solution: Quantum Statistics

Bose-Einstein Statistics:

WBE =
"

s

(Ns + Cs − 1)!

Ns !(Cs − 1)!
(3)

WFD =
"

s

Cs !

Ns !(Cs − Ns)!
(4)

In the ‘classical limit’ Cs ≫ Ns

WFD and BE ≈
"

s

Cs
Ns

Ns !
= WB/N! (5)
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Symmetrisation Postulate

“It is not possible to understand classically why we must divide
[. . . ] by N! to obtain the correct counting of states. The reason
is inherently quantum mechanical. Quantum mechanically, atoms
are inherently indistinguishable in the following sense: A state of
the gas is described by an N-particle wave function, which is either
symmetric or antisymmetric with respect to the interchange of any
two particles. A permutation of the particles can at most change
the wave function by sign, and it does not produce a new state
of the system. Hence we should divide [. . . ] by N!. This rule
of counting is known as the “correct Boltzmann counting”. It is
something that we must append to classical mechanics in order to
get right answers.” (Huang 1963)
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Uncertainty Relations

“So long as we are dealing with classical systems, the N! microsi-
tuations are in fact different and can be distinguished from one
another. In quantum mechanical systems, however, we can no
longer distinguish them. This is certainly due to the fact that we
cannot follow the atoms so closely along their orbits that we can,
for instance, know which atom is which after a collision. This
again is a consequence of Heisenberg’s famous relations.” (Ter
Haar 1954)
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Taking Stock
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Taking Stock

Driving the orthodox solution is the assumption that classical particles
are distinguishable and quantum particles are indistinguishable.
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Taking Stock

Driving the orthodox solution is the assumption that classical particles
are distinguishable and quantum particles are indistinguishable.

Should we regard Gibbs’ Paradox as some kind of Kuhnian anomaly?
A problem only quantum theory can resolve?

Or can it (should it?) be solved purely classically?

Is there any structural feature of the problem which tells us which
option to take?
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Dieks’ Classical Particle Distinguishability

[C]lassical particles can be named and distinguished by their dif-
ferent histories. A process in which two classical particles of the
same kind are interchanged can therefore certainly produce a dif-
ferent microstate. Indeed, imagine a situation in which there is
one particle at position [r1] and one particle at position [r2], and
in which at a later instant there is again one particle at [r1] and
one at [r2]; suppose that their respective momenta are the same
as before. What has happened in the meantime? There are two
possibilities: either the particle that was first at [r1] is later again
at [r1] and the particle that was first at [r2] is later again at [r2],
or the particles have exchanged their positions. The latter case
would clearly be different from the former one: it corresponds to
a different physical process. Although it is true that the two final
situations cannot be distinguished on the basis of their instanta-
neous properties, their different histories show that the particle at
[r1] in one final situation is not the same as the particle at [r1] in
the other final situation. (Dieks 2013)
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Trajectories = Distinguishability

(a) Initial state (b) Final state (swap)
(c) Final state (no
swap)

Figure: (a) is the initial state of a system consisting of two particles in a
container. The arrows indicate their velocities. States (b) and (c) are the final
states of particles after they follow trajectories which lead them to swapping and
not swapping, respectively. The black dot depicts the particle represented by the
first factor position and the white dot depicts the particle represented by the
second factor position.
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Evaluating Dieks’ Argument
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Evaluating Dieks’ Argument

Note that the system in which the particles swap must have a different
dynamics from the system in which they don’t:

ϕ¬swap : s %→ s (6)

ϕswap : s %→ π12(s) (7)

where ϕt : M → M is phase flow.
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Evaluating Dieks’ Argument

Note that the system in which the particles swap must have a different
dynamics from the system in which they don’t:

ϕ¬swap : s %→ s (6)

ϕswap : s %→ π12(s) (7)

where ϕt : M → M is phase flow. Each phase flow is generated by the
corresponding Hamiltonian hswap and h¬swap. Therefore, the correct
conclusion is that the phase point s in the phase space of dynamical
system 〈M,ω, h¬swap〉 is a different state from π12(s) in the phase space of
dynamical system 〈M,ω, hswap〉.

James Wills Gibbs’ Paradox and Indistinguishability February 9, 2023 35 / 46



Evaluating Dieks’ Argument

Note that the system in which the particles swap must have a different
dynamics from the system in which they don’t:

ϕ¬swap : s %→ s (6)

ϕswap : s %→ π12(s) (7)

where ϕt : M → M is phase flow. Each phase flow is generated by the
corresponding Hamiltonian hswap and h¬swap. Therefore, the correct
conclusion is that the phase point s in the phase space of dynamical
system 〈M,ω, h¬swap〉 is a different state from π12(s) in the phase space of
dynamical system 〈M,ω, hswap〉. But this is not the answer to our
question!
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Remove representational redundancy
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Saunders Classical Particle Indistinguishability

Remove representational redundancy

If the particles are identical (they share all intrinsic properties like
charge, mass and spin), then the states πij(s) and s (for 1 ≤ i , j ≤ N)
represent one and the same physical state.
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Saunders Classical Particle Indistinguishability

Remove representational redundancy

If the particles are identical (they share all intrinsic properties like
charge, mass and spin), then the states πij(s) and s (for 1 ≤ i , j ≤ N)
represent one and the same physical state.

Remove this representational redundancy by passing to the reduced
phase space, M ′ = M/SN : the quotient of the phase space under the
action of SN , the permutation group. Points s ∈ M ′ may be
understood as equivalence classes [s] each containing N! elements all
related to the s ∈ M by the permutations π ∈ SN .
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More puzzles...
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More puzzles...

Saunders seems to be offering us a purely classical way of justifying
the N! factor.
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the N! factor.

But isn’t it puzzling that we are considering Gibbs’ paradox from the
Boltzmann approach?
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More puzzles...

Saunders seems to be offering us a purely classical way of justifying
the N! factor.

But isn’t it puzzling that we are considering Gibbs’ paradox from the
Boltzmann approach?

And isn’t it funny that sometimes the N! is talked of as if it is a
‘correction factor’? Can’t it be rigorously derived?
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A Simple Motivation

James Wills Gibbs’ Paradox and Indistinguishability February 9, 2023 38 / 46



A Simple Motivation

Consider a system which flips a red coin (R) and a green coin (G ) each of
which can land Heads (H) or Tails (T ). Suppose an observer of this
system is colourblind. Then the set of physical states is

M = {(GH,RH), (GT ,RH), (GH,RT ), (GT ,RT )}

James Wills Gibbs’ Paradox and Indistinguishability February 9, 2023 38 / 46



A Simple Motivation

Consider a system which flips a red coin (R) and a green coin (G ) each of
which can land Heads (H) or Tails (T ). Suppose an observer of this
system is colourblind. Then the set of physical states is

M = {(GH,RH), (GT ,RH), (GH,RT ), (GT ,RT )}

while the set of observable states is

Ω = {(H,H), (H,T ), (T ,T )}

James Wills Gibbs’ Paradox and Indistinguishability February 9, 2023 38 / 46



A Simple Motivation

Consider a system which flips a red coin (R) and a green coin (G ) each of
which can land Heads (H) or Tails (T ). Suppose an observer of this
system is colourblind. Then the set of physical states is

M = {(GH,RH), (GT ,RH), (GH,RT ), (GT ,RT )}

while the set of observable states is

Ω = {(H,H), (H,T ), (T ,T )}
Lessons:

When we observe a physical system we are gathering relative
frequencies of elements of the sample space Ω.
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which can land Heads (H) or Tails (T ). Suppose an observer of this
system is colourblind. Then the set of physical states is

M = {(GH,RH), (GT ,RH), (GH,RT ), (GT ,RT )}

while the set of observable states is

Ω = {(H,H), (H,T ), (T ,T )}
Lessons:

When we observe a physical system we are gathering relative
frequencies of elements of the sample space Ω.

Probability measures are defined on sample spaces which, I argue, are
constrained by observables.
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A Simple Motivation

Consider a system which flips a red coin (R) and a green coin (G ) each of
which can land Heads (H) or Tails (T ). Suppose an observer of this
system is colourblind. Then the set of physical states is

M = {(GH,RH), (GT ,RH), (GH,RT ), (GT ,RT )}

while the set of observable states is

Ω = {(H,H), (H,T ), (T ,T )}
Lessons:

When we observe a physical system we are gathering relative
frequencies of elements of the sample space Ω.

Probability measures are defined on sample spaces which, I argue, are
constrained by observables.

So:

We must view the space which ‘carries’ the probability measure in
statistical mechanics as a sample space, not the phase space.
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Should we quotient?

Goal of quotienting, typically construed: construct a space containing
all and only the physically distinct states.
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Our goal in statistical mechanics: construct a space containing all and
only observationally distinct states.
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Our goal in statistical mechanics: construct a space containing all and
only observationally distinct states.

If we do quotient, it is with respect to the equivalence relation “...is
observationally equivalent to...”
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Should we quotient?

Goal of quotienting, typically construed: construct a space containing
all and only the physically distinct states.

Our goal in statistical mechanics: construct a space containing all and
only observationally distinct states.

If we do quotient, it is with respect to the equivalence relation “...is
observationally equivalent to...”

If we quotient with this equivalence relation, we do not end up with a
state space, but rather a sample space.
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Observational Indistinguishability
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Observational Indistinguishability

Classical observables are functions fi : M → R.
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Observational Indistinguishability

Classical observables are functions fi : M → R.

Observational Indistinguishability

States s and s ′ in M are observationally indistinguishable with respect to a
set of observables {fi} if and only if fi (s) = fi (s

′) for all fi .
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Observational Indistinguishability

Classical observables are functions fi : M → R.

Observational Indistinguishability

States s and s ′ in M are observationally indistinguishable with respect to a
set of observables {fi} if and only if fi (s) = fi (s

′) for all fi .

This is a definition-schema. Depends on {fi}.
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Observational Indistinguishability

Classical observables are functions fi : M → R.

Observational Indistinguishability

States s and s ′ in M are observationally indistinguishable with respect to a
set of observables {fi} if and only if fi (s) = fi (s

′) for all fi .

This is a definition-schema. Depends on {fi}.
Use this notion to construct the sample space Ω from the state space
M.
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Dynamical Indistinguishability
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Dynamical Indistinguishability

Consider the case where {fi} = {h}.
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s and π(s) are π-dynamically indistinguishable iff h(s) = h(π(s))
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Dynamical Indistinguishability

Consider the case where {fi} = {h}.

Dynamical Indistinguishability

s and π(s) are π-dynamically indistinguishable iff h(s) = h(π(s))

Can show that s and π(s) are dynamically indistinguishable for all s iff π
leaves the hamiltonian phase flow invariant.
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Dynamical Indistinguishability

Consider the case where {fi} = {h}.

Dynamical Indistinguishability

s and π(s) are π-dynamically indistinguishable iff h(s) = h(π(s))

Can show that s and π(s) are dynamically indistinguishable for all s iff π
leaves the hamiltonian phase flow invariant.

Dynamical Indistinguishability

Two particles of an N particle system, represented by factor positions i
and j in the N tuple, are dynamically indistinguishable if and only if the
Hamiltonian h of the system satisfies h(s) = h(πij(s)) for all states s.
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Examples

Consider the permutation symmetries of the following Hamiltonians:

h1 = (p21 + p22)/2m;

h2 = (p21 + p22 + p23 + p24)/2m + ke2/|r13|;
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Examples

Consider the permutation symmetries of the following Hamiltonians:

h1 = (p21 + p22)/2m;

h2 = (p21 + p22 + p23 + p24)/2m + ke2/|r13|;
h2(s) = h2(π13(s)) and h2(s) = h2(π24(s)) for all s;

But h2(s) ∕= h3(π23(s)) and h2(s) ∕= h3(π14(s))
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Gibbs’ Statistical Mechanics

Gibbs invites us to

imagine a great number of systems of the same nature, but differ-
ing in the configurations and velocities which they have at a given
instant. (Gibbs 1902)
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Gibbs’ Statistical Mechanics

Gibbs invites us to

imagine a great number of systems of the same nature, but differ-
ing in the configurations and velocities which they have at a given
instant. (Gibbs 1902)

This collection of systems is known as the ensemble and it is this that is
the object of study in Gibbs’ statistical mechanics:

And here we may set the problem, not to follow a particular sys-
tem through its succession of configurations, but to determine how
the whole number of systems will be distributed among the vari-
ous conceivable configurations and velocities at any required time,
when the distribution has been given for some one time. (Gibbs
1902)
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Gibbs’ Statistical Mechanics

Let N be the number of copies of the system in the statistical
ensemble: the number of observationally distinct ‘ways the system
can be’.
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Gibbs’ Statistical Mechanics

Let N be the number of copies of the system in the statistical
ensemble: the number of observationally distinct ‘ways the system
can be’.

The number of systems in a region R of phase space is

n(R) :=

#

R
D(p, q) dp1...dqn. (8)

where D(p, q) is the density-in-phase.
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Let N be the number of copies of the system in the statistical
ensemble: the number of observationally distinct ‘ways the system
can be’.

The number of systems in a region R of phase space is

n(R) :=

#

R
D(p, q) dp1...dqn. (8)

where D(p, q) is the density-in-phase.

Gibbs defines the measure of a region R ⊆ M

µ(R) :=

#

R
P(p, q) dp1...dqn. (9)

where P(p, q) := D(p, q)/N .
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Gibbs’ Statistical Mechanics

Let N be the number of copies of the system in the statistical
ensemble: the number of observationally distinct ‘ways the system
can be’.

The number of systems in a region R of phase space is

n(R) :=

#

R
D(p, q) dp1...dqn. (8)

where D(p, q) is the density-in-phase.

Gibbs defines the measure of a region R ⊆ M

µ(R) :=

#

R
P(p, q) dp1...dqn. (9)

where P(p, q) := D(p, q)/N .

µ is a probability measure on M if N = n(M).
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Gibbs’ Statistical Mechanics

It can happen that N < n(M) when distinct points in M are
observationally indistinguishable and hence correspond to the very
same point in Ω.
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Gibbs’ Statistical Mechanics

It can happen that N < n(M) when distinct points in M are
observationally indistinguishable and hence correspond to the very
same point in Ω.

If this happens then µ(M) > 1 and µ(Ω) = 1 for Ω ⊂ M.
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Gibbs’ Statistical Mechanics

It can happen that N < n(M) when distinct points in M are
observationally indistinguishable and hence correspond to the very
same point in Ω.

If this happens then µ(M) > 1 and µ(Ω) = 1 for Ω ⊂ M.

We can ensure that we always have a probability measure on M by
defining:

P(R) :=
µ(R)

µ(M)
(10)
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Gibbs’ Statistical Mechanics

It can happen that N < n(M) when distinct points in M are
observationally indistinguishable and hence correspond to the very
same point in Ω.

If this happens then µ(M) > 1 and µ(Ω) = 1 for Ω ⊂ M.

We can ensure that we always have a probability measure on M by
defining:

P(R) :=
µ(R)

µ(M)
(10)

P ≡ µ if N = n(M).
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Deriving the factor N!

All N! elements of the permutation group SN are symmetries of the
free particle Hamiltonian.
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Deriving the factor N!

All N! elements of the permutation group SN are symmetries of the
free particle Hamiltonian.

Partition M into N! regions Ui all dynamically indistinguishable.
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Deriving the factor N!

All N! elements of the permutation group SN are symmetries of the
free particle Hamiltonian.

Partition M into N! regions Ui all dynamically indistinguishable.

Assume P(s) = α(h(s)) for some α : R → R and for all s ∈ M.
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Deriving the factor N!

All N! elements of the permutation group SN are symmetries of the
free particle Hamiltonian.

Partition M into N! regions Ui all dynamically indistinguishable.

Assume P(s) = α(h(s)) for some α : R → R and for all s ∈ M.

Any one Ui may be taken to be the sample space so µ(Ui ) = 1.
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Deriving the factor N!

All N! elements of the permutation group SN are symmetries of the
free particle Hamiltonian.

Partition M into N! regions Ui all dynamically indistinguishable.

Assume P(s) = α(h(s)) for some α : R → R and for all s ∈ M.

Any one Ui may be taken to be the sample space so µ(Ui ) = 1.

Then µ(M) =
!N!

i=1 µ(Ui ) = N!µ(Ui ) = N!.
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Deriving the factor N!

All N! elements of the permutation group SN are symmetries of the
free particle Hamiltonian.

Partition M into N! regions Ui all dynamically indistinguishable.

Assume P(s) = α(h(s)) for some α : R → R and for all s ∈ M.

Any one Ui may be taken to be the sample space so µ(Ui ) = 1.

Then µ(M) =
!N!

i=1 µ(Ui ) = N!µ(Ui ) = N!.

So P(R) = µ(R)/N!.
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