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1 Introduction

Entropy is a remarkably multi-faceted physical quantity. From its beginnings in thermo-
dynamics, related concepts have since been imported into many different fields such as
statistical mechanics, information theory, dynamical systems theory, computation the-
ory and quantum theory. Academic interest in information has also been growing over
the last few decades and is widely seen as playing a crucial role in our understanding of
the world and our relation to it. With the development of these two concepts in parallel,
their interconnections have purported to reveal interesting and surprising things about
the world. This article will explore some major topics in entropy and information and
the various natures of their connection.

This article adopts a quasi-historical approach to the subject, tracing the beginnings,
development and intersection of the two concepts across time. Therefore, we begin with
entropy in thermodynamics, its original incarnation, before moving on to discussing en-
tropy in statistical mechanics (Boltzmann’s and Gibbs’). Attempts to reduce or explain
macroscopic thermodynamic behaviour in terms of the underlying microscopic mechan-
ics of molecules led to various proposed definitions of entropy in statistical mechanics. It
is here where hints of entropy’s connection with information first make themselves visi-
ble. We then move on to discuss Shannon information, a precisely defined mathematical
quantity in the theory of communication, which bears great formal and conceptual sim-
ilarities with entropy in statistical mechanics. Up until the development of a precise
mathematical characterisation of information given to us by communication theory, the
concept of information employed has been the rough, ordinary language sense of informa-
tion as something we learn or the thing by which we increase our knowledge. Therefore,
it is with the Shannon information measure that we are able to really assess precise
formal and conceptual links between entropy and information. A major contribution
to this project was put forward by Edwin Jaynes, who proposed a new way of looking
at classical statistical mechanics which puts Shannon information at its foundations.
Further developments in this direction were put forward by Rolf Landauer in the 1960s
in the context of the theory of computation. He proposed that there is an unavoidable
entropy production in the processing of information by computers. The article concludes
with more modern and current research topics which explore entropy and information
in quantum theory and quantum computation.



2 Entropy in thermodynamics

Entropy was first introduced into physics in the 19" century by Clausius in the context
of thermodynamics. In order to explore thermodynamic entropy’s connection with infor-
mation, we need to run through a brief development of the concept, following Clausius’
reasoning. It begins with the following observation, which he called the Second Main
Principle of the Mechanical Theory of Heat:

“A passage of heat from a colder to a hotter body cannot take place without
compensation” (Clausius 1879, p. 78)

This sentence expresses the fact that heat transfer from a hotter to colder body takes
place spontaneously; one must perform work in order to transfer heat from a colder to
a hotter body!. This observation may be seen as a restriction on the kinds of processes
we may use to move heat around and extract work from heat sources. To develop the
mathematical and physical implications of this observation, we consider a process which
can be used to extract work from the transfer of heat from hot to cold and which can
consume work to move heat from a colder body to a hotter one. This process is called
a Carnot cycle, named after Sadi Carnot who first introduced the idea in his work
Réflexions sur la puissance motrice du feu et sur les machines propres a développer cette
puissance (Carnot 1890). For a classic and more modern reference, see Clausius (1879,
pp. 69-89) and Callen (1960, pp. 77-79).

By considering the heat transferred between the hot and cold bodies and the heat
converted into work along the cycle, we arrive at the following result:
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This says that the integral of the function d@Q/T along a reversible? cycle is zero and is
true if and only if the Second Main Principle is true. This means that dQ/T is a state
function: a function dependent only on the thermodynamic state of the system. We can
therefore define the state function entropy?:
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This concludes our brief conceptual and mathematical development of the foundations
of entropy in thermodynamics. From this, one can go on to show many interesting con-
sequences, including the Second Law of thermodynamics, but that is not our focus here

1. This fact is known as the Clausius statement of the Second Law of thermodynamics, to distinguish
it from the Kelvin statement which states that it is impossible to completely convert heat into work.
The two statements can be shown to be equivalent (see Blundell and Blundell (2010, p. 131)). Here, I
leave Kelvin’s statement aside and focus only on Clausius reasoning.

2. A process from an initial state to a final state is reversible just in case there is a process which can
recover the initial state of the system and the environment. See Uffink (2001) which contains a detailed
discussion of the historical and conceptual development of reversibility in thermodynamics.

3. Clausius coined the term after the Greek word for ‘transformation’ 7pomn since, roughly speaking,
it assigns a value to the transformation of heat into work and vice versa. Clausius’ arguments to this
effect can be found in Clausius (1879, pp. 91-107).



(for a thorough and rigorous conceptual and mathematical development, see Clausius
(1879)). We have seen how it is defined mathematically and the principle on which its
existence depends. This was sufficient to see that the thermodynamic entropy has no
connection with information at all; the thermodynamic entropy came into being solely
off the back of observations about the relations between heat and work and way heat
moves between hot and cold bodies.

The link with information comes from the definitions of entropy in statistical me-
chanics which claim to explain the behaviour of the thermodynamic entropy in terms of
the dynamics of the microconstituents of matter. We therefore move on to explain and
discuss definitions of entropy in statistical mechanics and their link to information.

3 Entropy in Statistical Mechanics

The project of statistical mechanics is to account for macroscopic thermal phenomena in
terms of the dynamics of the microscopic constituents of matter. In particular, the search
for the statistical analogue of the thermodynamic entropy has guided and continues to
guide much research in this area, although the Second Law is definitely not the only
focus. See Uffink (2007) and Frigg (2008) for recent overviews of the research happening
in the foundations of statistical mechanics. The purpose of this section is to examine the
purported link between information and Boltzmann’s and Gibbs’ statistical mechanical
definitions of entropy.

3.1 Boltzmann entropy

Boltzmann’s statistical mechanical definition of entropy was motivated by attempts to
account for the Second Law of thermodynamics in terms of the mechanics of molecules.
We do not need to directly assess how successful this endeavour was in order to examine
his entropy’s link with information. In order to introduce Boltzmann’s definition and
his argument for it, we need to introduce some formalism. Boltzmann’s argument takes
place in p-space: the 6-dimensional single particle phase space whose points are of
the form (x,p) where x = (z,y, z) is the position of the particle and p = (pz,py, p-)
is its momentum. A particle with a particular momentum at a particular position is
represented as a point in the p-space. A system consisting of N particles will then
be represented by N points distributed in the p-space. We can partition the p-space
into discrete cells indexed with ¢ € N. The number of particles in cell ¢ is denoted
by n; = f(x,p)d®>xd®p where f is the distribution function, denoting the number of
particles per unit volume of p-space. The system satisfies ), n; = N.

A distribution specifies the number of molecules in each cell. For example, if there
are n; particles in cell i, we may denote this by a tuple D = (n1,na,...,n;,..ng). A
complezion specifies which particles are in which cells. For example, in a system of two
cells and three particles, a distribution might be D = (2, 1) while one possible complexion
for this distribution might be particles A and B in cell 1 and particle C' in cell 2 and
another different complexion might be particles B and C' in cell 1 and particle A in cell



2. It follows that the number of complexions corresponding to a distribution is given by
the following expression:

N!
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where ‘I” denotes factorials, i.e. ! := x(z —1)...1, for any natural number z and 0! := 1.
We shall drop the subscript D in most of what follows unless it is important to make it
explicit.

The permutability measures how many ways a particular distribution can be achieved.
For example, if the distribution is (3,0) then P = 3!/3!0! = 1; this tells us that there
is only one way of scattering the three particles over the two cells in u-space such that
they all land in cell 1. If the distribution is (2,1), then W = 3!/2!1! = 3; this tells us
that there are three ways of scattering the three particles over the two cells in p-space
such that two of them land in cell 1 and one of them lands in cell 2.

This forms the basis for Boltzmann’s 1877 combinatoric argument that entropy is

related to the quantity P. One can find written in numerous classic and modern sources?
the following definition of the Boltzmann entropy:
S=klnP (4)

where k is the Boltzmann constant. Despite this formula being on his tombstone, Boltz-
mann did not write it down. In fact, he substituted in the definition of P, dropped an
additive constant® and finally arrived at:

@—- [ finf (5)

where du = d®xd®p denotes an element of p-space. It is this quantity, called the per-
mutability, which he explicitly identified as the statistical mechanical analogue of the
thermodynamic entropy up to a multiplicative constant. To what extent is successful is
beyond the scope of this article. The formula for 2 was given the symbol H in Boltz-
mann’s 1872 work which is famous for containing the H-theorem and the Boltzmann
equation. We do not discuss this work here as it is tangential to our main goal but
its legacy is greatly felt and discussion of it forms a large and important part of the
literature in the foundations of statistical mechanics (see Uffink (2017) for a discussion).

The Boltzmann entropy has taken on a different form under more modern develop-
ments® of the concept. The idea is now to set the problem, not in the 6-dimensional
single particle phase space p-space but in the 6 N-dimensional N-particle phase space,
I-space whose points take the form (xi,...,Xn,P1,...,PN). A coordinate in I'-space
therefore encodes the position and momentum of all N particles. These points represent
microstates: the mechanical state (as specified by the position and momentum) of the N
particle system. In the Boltzmann picture, I'-space is equipped with a Lebesgue measure,

4. For example, Rushbrooke (1949) and Blundell and Blundell (2010).

5. The details of this are beyond the scope of this article. They can be found in a translation of
Boltzmann’s original paper: Sharp and Matschinsky (2015).

6. See for example Goldstein (2001) and Lebowitz (1999).



1 (not to be confused with the p in p-space) which assigns sizes to sets of points of the
phase space, in much the same way as we assign a set of points inside a box a volume
measure. ((A) denotes the measure of region A of the phase space. For some partitions
of I'-space, the elements of the partition will correspond to macrostates: My, ..., M,
(where n is the number of elements in the partition) which are states of the system
specified, not by the mechanical state of the IV particles, but by macrovariables such as
temperature, pressure or volume. In general, many different microstates can correspond
to the same macrostate; this is expressed more precisely by saying that macrostates
supervene on microstates; there cannot be a change in the former without a change in
the latter. The regions M, ..., M,, have measures p(My), ..., u(M,). We then define the
entropy of a system in macrostate M; as follows:

S(M;) = kIn[u(M;)]. (6)

So, we have two conceptually different notions of the Boltzmann entropy: Q and S(M;).
They are related, however: we can recover the expression for ) from Equation 6. To
see this, note that I'-space is the Cartesian product of N copies of u-space. Therefore, a
partition of p-space induces a partition on I'-space, i.e. I'-space will also be divided up
into cells which do not overlap and which cover the whole space. If the volume of the
cells in p-space is dw, and denoting the set of points in I'-space which correspond to the
distribution D; by I'p,, then the measure of that set is given by:

M(FDi) = PDi(éw)N (7)

We may view the I'p, as a concrete example of how to partition I'-space. We can
substitute Equation 7 into 6 to obtain:

S(I'p,) = kIn[Pp,(6w)N] = kIn[Pp,] + kN In[dw]

We can see that this is Equation 4 up to an additive constant. If we now substitute in
the expression for Pp, and use Stirling’s approximation’, we obtain:

k
S = —ani Inn;
=1

up to an additive constant depending on N and éw. Recalling that n; = f(x, p)d*xd’p
from earlier, we can see that this is equal to 2 up to an additive constant. What this
has shown is that S(M;) = Q (up to an additive constant) if the measure p is given by
Equation 7. The expression in Equation 6 is therefore a more general version of Equation
5 since it allows for an arbitrary measure. While the two definitions of the Boltzmann
entropy are related for a specific choice of measure, they are in general conceptually
distinct, since Q is defined on p-space and S(M;) on I'-space. Given this conceptual
difference, we consider each of their connections with information.

7. For the details, see Frigg and Werndl (2011, p. 127).



We begin with Equation 5. First, observe that f decreases when the particles are
more spread out over p-space. At first, this does not seem to readily lend itself to an
interpretation in terms of information but it can be done. Suppose the particles are
maximally spread out over a volume V. f takes on a certain form. Then suppose that
we compress the gas to V/2. Then the particles have less of the u-space available to
them and f will increase in some parts of p-space. We can interpret what has happened
in terms of information. To start with an analogy: suppose you are asked to guess the
month of your friend’s birthday. You have twelve choices. Then they give you a clue that
the month starts with the letter ‘J’. The number of choices you have for their birthday has
decreased and so, intuitively at least, the information you have about when the birthday
is has increased. In a similar way, when the volume is halved, the number of choices for
where the particles are in the u-space has decreased and so your information for where
they are has increased®. We can also express this thought in terms of uncertainty. We
are more uncertain about where a particle is if they are more spread out over u-space
than if they are confined to a smaller region of the space. The purported (qualitative)
link between entropy and information, then, is this: when the f is defined over a larger
region of u-space, the information about where a particular particle of the system is in
the p-space decreases.

We now consider Equation 6’s link with information. Similar reasoning applies to
the previous case. Suppose we have a container of gas in macrostate M = (V,T'). This
macrostate is compatible with many different microstates. The Lebesgue measure of this
macrostate determines the entropy of the macrostate via the formula S(M) = k In[u(M)].
The larger the measure, the larger the entropy. This idea can be interpreted in terms of
information. If we have two macrostates M; and Ms and u(Mj) > p(Ms), then we may
say that we have more information about the microstate of Ms than we do about M;.
Put another way, we are more uncertain about the microstate of M; than we are about
that of My precisely because Ms has the larger measure.

While this does seem to make the link between Boltzmann entropy and information
clearer and more precise, it is important to emphasise the limitations of this link. Infor-
mation is an epistemic notion, typically associated with knowledge. This characterisation
is inevitably rough and vague because information does not get a precise characterisa-
tion when discussing its links with the Boltzmann entropy. The most that can be said is
that information is some kind of epistemic notion. But 2 is not a function of anything
that can be interpreted as epistemic; it is a function of the actual distribution of the
position and momentum of the particles over p-space. Things get more interesting when
we consider the more general definition of the entropy S(M;), since the entropy depends
upon the choice of measure. The question then seems to be open about how the measure
is determined: will it be determined on the basis of epistemic considerations or objective
ones? That is, does the measure p reflect our ignorance about the state of the system or
does it reflect some objective feature of the state of the system? [Roman: is there a
classic reference I can use here?] If we are to interpret the measure epistemically,
then a case could be made that S(M;) measures the lack of information we have about

8. Arguments similar to this can be found in Zemansky and Dittman (1997).



the state of the system.

3.2 Gibbs entropy

In his 1902 Elementary Principles in Statistical Mechanics, Gibbs set up a clear and
general mathematical framework to think about macroscopic thermal phenomena from
the point of view of the mechanics of the microscopic atoms making up the system. He
then invites us to

“imagine a great number of systems of the same nature, but differing in the
configurations and velocities which they have at a given instant,” (Gibbs
1902, p. iii)

This collection of systems is known as the ensemble; an enormous collection of copies of
the system under study which contains all of the possible ways the actual system could
be in?. It is the ensemble, not the actual system, that is the object of study in Gibbs’
statistical mechanics:

“And here we may set the problem, not to follow a particular system through
its succession of configurations, but to determine how the whole number of
systems will be distributed among the various conceivable configurations and
velocities at any required time, when the distribution has been given for some
one time. The fundamental equation for this inquiry is that which gives the
rate of change of the number of systems which fall within any infinitesimal
limits of configuration and velocity.” (p. iii)

We are invited to imagine that this ensemble is distributed in a particular way among the
possible mechanical states in I'-space. This distribution tells us how many systems lie in
a given region of the phase space. If we divide this number by the total number of systems
in the ensemble, we get a probability distribution denoted by p. It is this probability
distribution which will provide the link with information which we will explore later in
this section. We then study how the probability distribution over the phase space evolves
under the system’s dynamics, in Gibbs’ case, Hamiltonian dynamics. This is in contrast
to Boltzmann’s statistical mechanics, in which we study how a single system evolves
under the dynamics. In general, p will change with time. There are however, special
probability distributions which do not change with time under Hamiltonian evolution,
those in statistical equilibrium, and Gibbs singles these out as worthy of special attention
since they can be shown to give rise to equations which are analogous to equations from
thermodynamics.

The first probability distribution he considers'® in the so-called canonical ensemble
which we denote here by p.. By considering small changes in the constant values of the

9. For other characterisations of ensembles, see for example Schrodinger (1989, p. 3) and Tolman
(1979, p. 43).

10. Gibbs studies two other probability distributions: the microcanonical and the grand canonical
ensembles. We do not explore these in great detail here because it is the canonical distribution which is
most often connected with information.



canonical distribution (see Gibbs (1902, pp. 43—44)), he derives an equation which bears
great formal similarity to the fundamental equation of thermodynamics. The extent
to which this reduces thermodynamics to statistical mechanics and the strength of the
analogy between the statistical equation and the thermodynamic equation is of great
interest in the debate concerning to what extent thermodynamics is reduced to Gibbs’
statistical mechanics, but this is beyond the scope of this article. What is interesting for
our purposes is what corresponds to the thermodynamic entropy. By formal analogy with
the thermodynamic equation, the following expression, which Gibbs gives the symbol 7,
is analogous to the thermodynamic entropy:

n= _/pc log p. dI' (8)

It should be read as the expectation value of n = log p. in the canonical ensemble.

When considering the link of 7 with information, we run up against the same problem
as when we considered the link of S(M;) with information. If we interpret the proba-
bility distribution p., and hence the entropy, epistemically!!, then the entropy plausibly
reflects our lack of knowledge or information about the exact microstate of the system.
Such interpretations are controversial since it is unclear how exactly to square such an
epistemic interpretation with the objective physics Gibbs’ statistical mechanics appar-
ently gives us. On the other hand, if we interpret the probability distribution ontically
so as to remove that problem, then it becomes unclear what objective feature of the
system the probability distribution is meant to capture. This is just one aspect of the
general problem of trying to make sense of Gibbs’ statistical mechanics. See Frigg and
Werndl (2018) for further discussion on this point.

4 Entropy in Information Theory

What we have heard about information so far has been qualitative and only imprecisely
characterised; information is something which a source can have more or less of, may
be conveyed from one source to another and may or may not impart knowledge. In
what we have so far seen, certain mathematical objects may be seen as containing or
imparting information in some sense: the distribution function f may be seen as encoding
information about how many particles there are in a region of u-space and the measure
u from Equation 6 and the Gibbsian probability distribution p. may be seen as encoding
information about which mechanical state our system is in. But if we are to make the
link between entropy and information clear and precise we must make mathematically
precise the concept of information.

This was done in 1948 by Claude Shannon in his article A Mathematical Theory of
Communication. Shannon was concerned with what he called the ‘fundamental problem

11. There are broadly two ways of interpreting probabilities: epistemically or ontically. The latter
understands probabilities as reflecting the state of an agent’s knowledge while the former takes proba-
bilities as reflecting some feature of the world. For a review of the various interpretations of probability
see Hajek (2019) and references therein.



of communication’: basically, to send a message from one point to another. In his paper,
he made contributions concerning noisy channels and how to make savings based on the
statistical nature of the message. What is important for our purposes is his introduction
of a precise mathematical definition of information. It is important to emphasise that
information in this context is meant in quite a technical sense but it does capture some
features of the ordinary language sense of information. The feature it captures is the
surprise when we get a message we were not expecting; the more surprising the message,
the more informative it is. For example, we would say in an intuitive non-mathematical
sense, that the proposition “It is raining or it is not raining” has no information content
whatsoever because the proposition is a tautology, it is not surprising. Similarly, if you
tell someone something they already know, then you are not imparting any information
to them; what you tell them is not surprising. On the other hand, when we learn that
Boltzmann never wrote down the formula that he is most famous for, we are surprised
and the message is informative because of it.

To further illustrate the link between information and surprise, consider the following
example. Suppose it is the night of a nation’s democratic elections and the polls predict
that Party A are going to beat Party B. As the votes are being counted, we do not
actually know who is to win, but, going by the polls, we think it is more likely that Party
A beats Party B. Suppose the results come in and Party B wins. This was not impossible,
just less likely. Intuitively, we might say that we have gained more information learning
that Party B wins than we would have done had Party A won because it was less likely
that Party B wins and thus more surprising that Party B won. Thus, intuitively, the
more surprising something is, the less expected it is, the more information we gain. The
mathematical sense of information introduced by Shannon captures this intuition and
makes it more precise.

The setup is as follows. We introduce the concept of an information source which is
the probability distribution {p(my), ..., p(my,)} over a finite set of messages {m1, ..., my}.
Shannon then asks:

“Can we find a measure of how much ‘choice’ is involved in the selection
of the event or of how uncertain we are of the outcome?” (Shannon 1948,
p. 392)

Shannon’s key idea is that this measure is a function only of the probability of the
message. We write this function H(p1, pe, ..., pn). He argues that it is reasonable for the
information function to satisfy certain properties (see pp. 392-393):

1. Continuity. H should be continuous in the p;.

2. Monotonicity. If all the p; are equal, p; = 1/n, then H should be a monotonic
increasing function of n. With equally likely events there is more choice, or uncer-
tainty, when there are more possible events.

3. Branching. If a choice be broken down into two successive choices, the original H
should be the weighted sum of the individual values of H.



Shannon shows that the only function'? which satisfies these properties is:

=n
H=-) pilog,p; (9)
=1

For more discussion on these three properties and the proof which establishes this ex-
pression, see Shannon (1948, pp. 392-393 and 419-420). To understand how best to
interpret H, it is helpful to consider an example of how this formula works using the
simple example of a coin flip. If the probability distribution over the set of messages
{H,T} is {p(T) = 0,p(H) = 1}, then H = 0. Interpreted, this is saying that no in-
formation is produced by the source; the outcome is certain and not surprising to the
receiver. On the other hand, if the probability distribution is p(H) = p(T') = 0.5 then
H = —-0.51og0.5—0.510og 0.5 = 1. Interpreted, this is saying that the information source
is producing the maximal amount of information. The outcome is maximally uncertain
and surprising to the receiver.

We can interpret H as a measure of the receiver’s average uncertainty about the mes-
sage produced by the source'. If the message outcome is certain, we are not surprised
by the outcome, we learn nothing and thus gain no information. If the message is uncer-
tain then we do learn something and so gain some information. This interpretation as a
measure of uncertainty is important when it comes to discussing entropy in dynamical
systems theory in Section 4.3.

It is very important to emphasise that H is not a measure of the information con-
tained in a particular message. In this respect, it does depart from ordinary usage
somewhat since we often associate information with meanings of individual messages.
In the context of information theory, H is the measure of information of a source, un-
derstood as a probability distribution, that can output a variety of possible messages.
The reason for this departure from typical usage has to do with Shannon’s overall aims
in his 1948 paper; we want to consider together all the possible outputs of the source in
order to work out the capacity of the communication channel required to transmit a se-
quence of messages. When given the probabilities of the possible messages, it is possible
to reduce the capacity of the channel in order to transmit the required messages. This
leads us on to our next point: the interpretation of H as the amount of information in
a source.

The amount of information is measured in bits. This is a term found in Shannon
(1948, p. 380) and is short for binary digits when the logarithm is base 2. A device
which can be in two physical states (which we may denote 0 or 1), such as a switch, is
said to store one bit of information. For an ensemble of N devices, the total number of
possible states of the ensemble of N switches is 2!V so the number of bits that can be
stored is given by log, 2V = N.

12. Here, we are only considering the discrete Shannon entropy. There is a continuous version: see
Shannon and Weaver (1963, p. 87).

13. Although we can interpret H as a measure of uncertainty, care has to be taken in this regard;
Timpson (2013, §2.2.3) points out that the link between information and uncertainty is not so clean
because H is not a unique measure of uncertainty while it is a unique measure of information.

10



Given an information source H tells us, roughly speaking, the number of bits required
to transmit a given message. To see this, consider this example!. Suppose we have a
long sequence of N messages from a source. The number of possible sequences of length
N made up from n messages, where p; is the probability (assumed to match the frequency
of the message in the long sequence) of the source outputting message m;, is:

N!
C omlng!. . ny!

Now consider log, W. Using Stirling’s approximation (logz! = zlogx for large ) we
find that logy W = NH where H is the Shannon entropy'®. Thus the total number of
possible (very long) sequences is given by W = 2NV# | Expressing the possible sequences
in this way allows us to see that we only need N H bits to encode a message of length
N messages. Since 0 < H < 1 (where equalities with 0 and 1 hold in maximal cer-
tainty and uncertainty respectively (see the example with the coin flip earlier in this
section)) one can use fewer bits (on average) than there are messages in the sequence
to communicate the message'. In this sense, the Shannon entropy is a measure of the
amount of information in a source or, put another way, by how much the sequence can
be compressed and still recovered at the receiving end of the communication channel.
This interpretation of H as a measure of the information of a source is important when
we come to discuss quantum entropy and information in Section 7.

Having introduced this technical conception of information and seen the ways in
which it can be interpreted, we are now in a position to discuss information theory’s link
with physics.

4.1 Link with entropy in statistical mechanics: Shannon

Equation 9 looks formally very much like the two expressions for statistical mechanical
entropy (Equations 5 and 8) we have already seen. Shannon notes this formal similarity:

“The form of H will be recognized as that of entropy as defined in certain
formulations of statistical mechanics where p; is the probability of being in
cell 7 of its phase space. H is then, for example, the H in Boltzmann’s famous
H theorem.” (Shannon 1948, p. 393)

Here, Shannon notes the formal similarity to Boltzmann’s definition of entropy!”, 2. In
order to see the similarity more clearly, we need to manipulate the expression for {2 a
bit in order to recast it in terms of probabilities. Boltzmann writes €2 in terms of f, the
distribution function, where fdu denotes the number of particles in a cell in u-space.

14. This is a rough sketch of Shannon’s noiseless coding theorem (Shannon 1948, §9) found in Timpson
(2013, pp. 21-22).

15. Here is how we arrive at this result. log, W = Nlog, N — Y. n;log, n;. Substituting in n; = Np;,
recalling that » . p; = 1 and cancelling the terms in N log, N, we achieve the desired result.

16. For a more concrete example, see Shannon (1948, §11).

17. This same formula was given the symbol H in Boltzmann’s 1872 work on the H theorem which is
what Shannon is referring to here. See Section 3.1.

11



Recalling that the number of particles in cell ¢ is n; = fdu, the probability p; that a
particle is found in cell i of p-space is then n; /N where N is the total number of particles.
Writing p = f/N, we can recast € as a function of p:

2p) = ~N [ ploglpldn.

which is equal to Equation 5 up to an additive constant depending on N. We may
denote the entropy in Equation 5 by Q(f) to make the contrast more explicit. In order
to consider more precisely the link between €(p) and Shannon’s H, we write (p) in

terms of a discrete probability distribution'®:

Q(p) = -N sz' log p;. (10)

where p; is the probability of finding a particle in cell ¢ of the u-space. Having done this,
we can now interpret (p) as the entropy of an information source. The set of messages
contains elements of the form “there is a particle in cell ¢ of y-space” and the probability
distribution is p; = n;/N where n; is the number of particles in cell i and N is the total
number of particles in the system.

Although Shannon does not explicitly mention it, H can also be seen to be similar
to Gibbs’ definition of entropy of the canonical ensemble. The probabilities in Gibbs’ 7
however have a very different interpretation to the probabilities occurring in Q(p): they
give the probability that a system in the ensemble is in a particular cell of I'-space. We
may make the expression for 77 discrete just like we did with Q(p):

n=-> pilogpi (11)
A

where p; is the probability of finding a system in the ensemble in cell ¢ of the I"-space and
the sum is over all the cells in I'-space. This may now be interpreted as the entropy of an
information source. The set of messages contains elements of the form “there is a system
of the ensemble in cell i of I'-space” and the probability distribution is p; = n;/N where
n; is the number of systems in cell 4 and N is the total number of systems'®. Because of
the formal similarity to Boltzmann and Gibbs entropies, H is now known as the Shannon
entropy.

In this section we have seen how the Boltzmann and Gibbs entropies may be viewed
as entropies of information sources under certain interpretations of the probability dis-
tributions and the messages. But this does not tell us that the statistical mechanical

18. We do this to avoid a difficulty peculiar to the continuous Shannon entropy: while the discrete
entropy measures absolutely the uncertainty in the message, the continuous entropy measures it relative
to a coordinate system. Thus, changing variables will in general change the entropy. It does not, however,
change entropy differences. For more detail, see Shannon and Weaver (1963, pp. 90-91)

19. This highlights a major interpretational difficulty of the Gibbs entropy: how are we to interpret
the probabilities in Gibbs’ statistical mechanics if they appear to be about an imaginary ensemble of
systems? For a general discussion of probabilities in physics see Ben-Menahem and Hemmo (2012) and
Beisbart and Hartmann (2011).
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entropies are ‘really’ about information or ‘should’ be interpreted in the context of infor-
mation theory. The first attempt to actually do this and fully incorporate information
theory and statistical mechanics was by Edwin Jaynes, whose ideas are the subject of
the next section.

4.2 Link with entropy in statistical mechanics: Jaynes

In his 1957 Information Theory and Statistical Mechanics, Jaynes offered a reinterpre-
tation of statistical mechanics which put the Shannon entropy at its foundation. This
may be regarded as the first precise attempt to spell out precisely what the connection is
between information theory and statistical mechanics, first hinted at in Shannon’s work.
On this, Jaynes writes:

“[TThe development of information theory has been felt by many people to
be of great significance for statistical mechanics, although the exact way in
which it should be applied has remained obscure.” (Jaynes 1957, p. 621)

Jaynes’ application of information theory to statistical mechanics takes the form of a
proposal that the information theory entropy should be seen as the starting point of
statistical mechanics. The need for this radical reinterpretation of statistical mechanics,
he argues, comes from the lack of consensus among physicists of how to derive the
macroscopic laws from the mechanics of the microscopic atoms.

The basic problem in statistical mechanics is how to make predictions about bodies
consisting of large numbers of atoms without solving the equations of motion for each of
the atoms. This is simply because we cannot possibly know the position and momentum
of the all atoms. The next best thing we can do is determine the probability that particles
will have certain positions and momenta based on what we know about the macroscopic
properties of the body. What we want is a way of finding a probability distribution over
microstates which is unbiased and consistent with what we know about the macroscopic
properties of the system:

“our problem is that of finding a probability assignment which avoids bias,
while agreeing with whatever information is given.” (p. 622)

Jaynes argues that this unique probability distribution is given to us by maximising
the Shannon entropy subject to constraints given to us by the macroscopic state of the
system:

“It is now evident how to solve our problem; in making inferences on the
basis of partial information we must use that probability distribution which
has maximum entropy subject to whatever is known. This is the only unbi-
ased assignment we can make; to use any other would amount to arbitrary
assumption of information which by hypothesis we do not have.” (p. 623)

The reason we maximise the entropy is as follows. Recall that it was possible to interpret
H as a measure of the uncertainty one may have about the message coming out of a
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source. Jaynes therefore takes entropy and uncertainty to be synonymous. The more
uncertain we are, the more spread out the probability distribution, the higher the value of
H. Therefore, to find the probability distribution over microstates which is unbiased but
consistent with the macroscopic constraints, we have to find the probability distribution
which is maximally uncertain within the constraints; this is the only way not to bias
some microstates over others.

The idea of maximising the Shannon entropy subject to constraints in order to obtain
the most unbiased probability distribution consistent with the macroscopic properties
has come to be known as the Maximum Entropy Principle (MEP). The consequences
of this thinking is that statistical mechanics should no longer be regarded as a physical
theory trying to derive, via some physical argument, the macroscopic laws of of thermo-
dynamics from the microscopic laws governing the atoms, but as a method of statistical
inference; a method for making predictions about a macroscopic system from incomplete
information about the microstate of the system?’. This position has come to be known
more generally as Objective Bayesianism, defined as: “any position which holds that the
strengths of one’s beliefs should be representable by a probability function, from all those
that satisfy constraints imposed by evidence, that is maximally equivocal.” (Williamson
2010, p. 25).

However, a great deal of controversy surrounds the maximum entropy principle and
maximum entropy methods more generally. For an introduction to some of the con-
troversy surrounding the MEP see Uffink (1995, 1996) and Howson and Urbach (1993,
pp. 276-288) and for a defence of objective bayesianism more generally, see Williamson
(2010).

4.3 Link with entropy in dynamical systems theory: Kolmogorov-Sinai
Entropy

Dynamical systems theory deals with the long-term behaviour of systems whose time
evolution is determined by the system’s state at a given point in time and a law, or some
kind of state transition rule, which governs how this state evolves in time. Newtonian
dynamics is a paradigm example of a dynamical system. The study of dynamical systems
in the abstract rather than the study of particular dynamical systems has proven to be
useful and interesting. One of the reasons for this is that many physical theories are of
this form, and so the study of the more general, abstract form of these theories can help
us understand the individual features of the particular theories. Another reason is that it
can help us understand chaotic systems, understood here as systems exhibiting random
behaviour?!. But what does ‘random’ mean in this context? It is claimed that the ergodic
hierarchy (see Frigg, Berkovitz, and Kronz (2016) for an overview) provides the correct

20. Jaynes’ ideas were developed by many others in various fields (Levine and Tribus 1979). See Tribus
(1961) and Hobson (1971) for a development of Jaynes’ ideas in physics.

21. Another characterisation of a system’s chaotic behaviour is its sensitive dependence on initial
conditions; a small change in the initial conditions can lead to a big change in the state at a later
time. This characterisation, while relevant to dynamical systems, is not relevant to our information and
entropy discussion.
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and precise concepts that allow us to adequately characterise random behaviour. One of
the most important concepts in this heirarchy that is taken to be indicative of random
behaviour is a positive Kolmogorov-Sinai entropy. The justification for this, is that it
can be shown (see Frigg (2004)) to be equivalent, under certain plausible assumptions,
to a generalised version of the Shannon entropy??, which can in turn can be a measure
for randomness; roughly speaking, it can be a measure of the uncertainty in a future
outcome (the outcome being where the dynamical system will be). Thus, the Shannon
entropy is the ‘bridge’ connecting the KS entropy and some precise notion of randomness
namely: uncertainty in the future outcome.

To see more clearly the link with the Shannon entropy, we first introduce the basics
of dynamical systems theory. A dynamical system is a triple (I, u, ®;) where I' is the
phase space of the system and p is a measure on the space assigning volumes to regions
of the phase space?3. ®, is an automorphism sometimes also called a phase flow; it tells
us, given the state of the system at ¢ = 0 (the initial condition), what the state will be
in the future. The automorphism not only maps points to points but also subsets to
subsets. We may partition I' into regions o« = {a1, ..., @, } such that all these regions
taken together form the entire phase space. The system may start in any of the partitions
and move between them under the phase flow.

The analogies with communication theory is as follows. The partition of the phase
space o = {aq,...,an} corresponds to the set of possible messages of an information
source. The (suitably normalised) measure of the partitions {u(ay), ..., u(ay)} corre-
spond to the probabilities of the messages. The automorphism ®; corresponds to the
information source, since this ‘generates’ the ‘messages’ «;. In a dynamical system, the
partition the system is in at time ¢ will in general depend on which partition the system
was in at previous times, i.e. on the history of the system. In a similar way, the message
from the information source at time ¢ may depend on previous messages from the source
at previous times.

With these analogies, one can establish a rigorous link between dynamical systems
theory and communication theory. I summarise some important steps in the argument
(the details can be followed in Frigg (2004, §4)). Define the entropy of a partition:

n
H(a) == p(o)log p(ov) (12)
i=1
Notice that its functional form is identical to the Shannon entropy (Equation 9), hence
justifying calling it entropy. By incorporating technical assumptions about how the past
history of the system affects where the system will be in future partitions, we arrive at
the following definition of the entropy of an automorphism:

Hg, = supHg, () (13)
(e}

22. It can also be shown to be related to Lyapunov exponents (via Pessin’s theorem) and to algorithmic
complezity of a sequence (via Brudno’s theorem). See Frigg, Berkovitz, and Kronz (2016) for an overview
of these and their relation to the ergodic heirarchy.

23. We may assume the measure to be normalised: p(I") = 1. Then we can interpret the measure as a
probability measure.
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where Hg,(«) is the entropy of the automorphism with respect to partition «. The
motivation behind this definition is that it corresponds to the Shannon entropy of an
information source when we understand the phase flow as the source generating the
messages. However, there is a disanalogy between communication theory and dynamical
systems theory in this regard: in communication theory the messages are given to us
as part of the definition of the information source whereas the ‘source’ ®; does not
give us the ‘messages’ «;; the partition of I' is up to us to choose. We therefore do
not want the entropy to depend on the choice of o because otherwise our definition of
entropy might end up telling us more about « than about ®;. TIt is for this reason
that the dependence on « is eliminated by taking the supremum of Hg, () over all finite
measurable partitions. Then, through an equivalence theorem (Frigg 2004, p. 428), one
can show that the entropy of the automorphism is equivalent to the KS entropy.

The importance of this result is that it allows us to carry over results about unpre-
dictability and uncertainty in an information source over to dynamical systems. Recall
that when the Shannon entropy is zero there is no uncertainty about the output of the
source; the message from the information source is completely predictable. When the
Shannon entropy is greater than zero then we are uncertain about the message to come
out. This carries over to dynamical systems. If the KS entropy is greater than zero this
can now be interpreted as the unpredictability in the system; we are not able to predict
which partition the system will be in next. Even if we know at every past time which
partition the system was in, we will not be able to predict where it will be in the future
if the KS entropy is positve?*.

5 Maxwell’s demon

We leave the context of information theory behind now and consider other contexts in
which information, no longer necessarily construed in Shannon’s sense, meets entropy.
We now move on to discuss what is seen as classic intersection between the concepts of
entropy and information: Maxwell’s demon. This thought experiment is often seen as
indicating a powerful and deep link between entropy and information® although we will
see in these next two Sections that this view is far from uncontroversial. The setup goes
as follows (Maxwell 1875, pp. 328-329):

Imagine a container of gas of uniform temperature and pressure divided by a partition
equally into two portions A and B. It is a fact that in such a container, the molecules are
distributed according to the Maxwell-Boltzmann distribution. The important feature of
this distribution for our purposes is that it means that some particles will be moving
much faster than average and others will be moving much slower than average. Now
suppose that there is a a being (or, if it has nefarious aims, a ‘demon’) which has control

24. This is not strictly true but it gets the right idea. The point is that it is unpredictable on average.
There may be some points in time where the next partition is predictable. But even if you collect
information for ever, there will be some times in the future where the next partition is unpredictable.

25. See for example Blundell and Blundell (2010, p. 150) who write: “The Maxwell demon [...] beau-
tifully illustrates the connection between entropy and information.”
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over a small shutter in the partition and uses the shutter to allow the fast molecules to
pass from A to B and the slow molecules to pass from B to A. The demon will then
have created a temperature gradient without apparently doing any work. This directly
contradicts the Clausius statement of the Second Law of thermodynamics (see Section
2). Faced with this problem, we have two options:

1. We can allow exceptions to the Law. This would mean that the Law, strictly
speaking, is false or is only true in limited situations.

2. We can try to save the Law. This would involve trying to explain why the demon
cannot in principle affect an entropy decrease in the gas.

Let us first consider efforts to save the Law. These efforts by far make up the majority of
responses to Maxwell’s demon but come in various flavours. All these efforts, however,
have this in common: they all attempt to exorcise Maxwell’s demon by trying to locate
the compensating entropy increase. The first clarification such responses tend to make
is to specify what is meant by the ‘system’. The system is not just the box of gas but
must include the demon as well. This is because the Second Law refers to the entropy of
an isolated system. The box of gas is clearly not isolated since it is in contact with the
demon. However, the box of gas plus demon can be considered an isolated system. So,
the question becomes: how can the demon provide the compensating entropy increase,
so that, at the very least, the entropy of the system does not increase?

Typical answers involve appealing to information. The first part of the answer in-
volves arguing that in order for the demon to be able to do its job, it must be some
sort of computational device which is able to measure and store information about the
position and momenta of the particles in the gas in order to decide whether to open the
shutter or keep it closed. Let us now consider some specific responses to the demon.

Szilard (1929) argued that the entropy increase happens when the demon measures
the position and momentum of the particles; acquiring this information requires dis-
sipation of energy or producing entropy. This line of thought was later developed by
Brillouin (1951) and Gabor (1961). Later on however Bennett in his 1982; 1987 showed
that measurement could take place in principle without entropy production. The pur-
ported entropy increase therefore had to come from elsewhere. Bennett, using the ideas
of Rolf Landauer, claimed to have exorcised the demon by arguing that it came from
the erasure of information from the hardware storing the information.

Landauer’s ideas connecting entropy and information are explored and discussed in
more detail in Section 6. Here, we state Landauer’s conclusion and explain how Bennett
uses it to exorcise Maxwell’s demon. Bennett argues: in order for the demon to decide
whether or not to open the shutter, it must be able to store information about the po-
sition and momentum of particles and perform computations on this information. Once
the demon has decided whether to open or close the shutter on the basis of the position
and momentum of that particle, it erases that information and stores information about
the next approaching particle. Landauer claimed to show that the erasure is necessarily
accompanied by an entropy increase. What prevents the demon from breaking the Law,
writes Bennett:
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“is not the making of a measurement (which in principle can be done re-
versibly) but rather the logically irreversible act of erasing the record of one
measurement to make room for the next.” (Bennett 1982, p. 906)

This point of view has generated a great deal of debate: see Bennett (2003), Norton
(2005), Norton (2013), and Earman and Norton (1998, 1999) and references therein for
the details.

We now turn to the first option: allowing exceptions to the Law. Maxwell’s response
to his own demon is an example:

“This is only one of the instances in which conclusions which we have drawn
from our experience of bodies consisting of an immense number of molecules
may be found not to be applicable to the more delicate observations and
experiments which we may suppose made by one who can perceive and handle
the individual molecules which we deal with only in large masses.” (Maxwell
1875, p. 329)

The ‘conclusion’ Maxwell refers to is the Second Law; we have deduced from our ob-
servations of macroscopic bodies that spontaneous temperature gradients do not form.
His point is that, if we stop thinking about macroscpoic bodies as homogeneous masses
(as we do in thermodynamics) and start thinking about bodies in terms of the motion
an interaction of the individual molecules, then our conclusions drawn from the former
characterisation will not be applicable to the latter. In other words, the Second Law as
applied to homoegeneous masses is true but, strictly speaking, the Second Law is false
when applied to bodies consisting of a large number of molecules. Since bodies do in fact
consist in a large number of atoms, the Second Law is strictly false and only appears
true to us due to the very large number of molecules. The dynamics governing the atoms
do in fact allow that temperature gradients may spontaneously form; this is known as
Poincaré recurrence.

The literature on the connection between Maxwell’s Demon and information is enor-
mous so there is not sufficient space to assess all the commentary. For an extremely
comprehensive survey of the topic, see Leff and Rex’s 1990; 2002. We now turn to dis-
cuss Landauer’s Principle in the thermodynamics of computation, a key result used by
Bennett in his analysis of Maxwell’s demon concerning the connection between entropy
and information.

6 Landauer’s Principle

In his 1961 paper Irreversibility and Heat Generation in the Computing Process, Lan-
dauer developed the idea that the erasure of information from the memory of a computing
machine gives rise to an entropy production. We think of a computer as a finite array
of N binary elements which can hold information in the form of strings of 0 and 1.
Computers work by performing logical operations on these values. The results of these
operations are then stored in the binary elements of the computer. However, since the
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memory of a computer is finite, there must come a point where information no longer
needed has to be erased in order for the computer to store the results of its logical opera-
tions. This erasure normally involves resetting the binary elements to one of the values,
say 1, so that the computer can store information on these elements. It is this necessary
erasure, performed by the logical operation RESTORE TO ONE, which Landauer argues
necessarily produces entropy. His argument for this, in his own words, goes as follows:

“We shall call a device logically irreversible if the output of a device does
not uniquely define the inputs. We believe that devices exhibiting logical
irreversibility are essential to computing. Logical irreversibility, we believe,
in turn implies physical irreversibility, and the latter is accompanied by dis-
sipative effects.” (Landauer 1961, p. 186)

In other words, he claims that logical irreversibility is a necessary condition for comput-
ing. He then goes on to argue that logical irreversibility implies physical irreversibility,
meaning that entropy is produced. This increase in entropy is made manifest as heat
dissipation into the environment.

Let us look at the steps of the argument in more detail. Let us first examine his claim
that computing devices are logically irreversible?S. An example of a logically reversible
device is one which negates the input; so if the input is 1 the output is 0 and vice
versa. In this case, the output uniquely defines the input and the device is logically
reversible. A simple example of a logically irreversible device would be one which takes
the conjunction of two values; in this case, the device is not logically reversible because a
result of 0 might have been obtained from the conjunction of 0 and 1 or the conjunction
of 0 and 0.

The next step is to argue that this logical irreversibility implies physical irreversibility
and hence an increase in entropy due to the dissipative effects. Suppose that we have
an assembly of bits, all with value 0. This state, writes Landauer,

“corresponds, by the usual statistical mechanical definition of entropy, S =
kIn W, to zero entropy. The degrees of freedom associated with the infor-
mation can, through thermal relaxation, go to any one of 2V states (for N
bits in the assembly) and therefore the entropy can increase by kN In2 as
the initial information becomes thermalized.” (p. 187)

Landauer does not explicitly state exactly what he means by W in this case but he
seems to take it to mean the number of states available to the system. If only one state
is available to the system, then W = 1 and so the entropy of the system has zero entropy.
If all the bits are capable of taking either of their two values, ZERO or ONE, then there
are 2V states available to the system, hence the claim that the system can increase its
entropy by up to kN In2; the system can go from having only one state available to it

26. In fact, Landauer does concede that there could exist logically reversible devices using a device
called the Toffoli gate (Toffoli 1980), but that they would be practically useless. See Landauer (1961,
p. 187). Although Bennett (1982) claims that (useful) reversible computing is in fact possible.
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to having all possible states available to it. The process by which a system can increase
its entropy in this way, Landauer calls “thermal relaxation” or “thermalization”.

Now we consider the reverse process; we go from a state in which each bit can take
either value to a state in which each bit can only take one value, say 1. This is called
the RESTORE TO ONE operation. This is exactly the kind of operation that would be
required in any logically irreversible computer; information which is no longer needed
for the computer program would be erased in order to make way for the output of
the program. This erasure is performed by the RESTORE TO ONE operation. In this
operation, the entropy of each bit has been reduced by k1n2. Given that the computer
is a closed system, this reduction in entropy of each bit must appear somewhere as
heat supplied to the surroundings. This dissipation of heat and resulting production of
entropy is a physically irreversible process. Hence, logical irreversibility implies physical
irreversibility. Landauer provides a specific example on Landauer 1961, p. 188.

It is worth emphasising here as a closing remark that the connection between entropy
and information suggested by Landauer’s work, has nothing to do with the connection
suggested by Shannon’s work. In Landauer’s words:

“Note that our argument here does not necessarily depend upon connections,
frequently made in other writings, between entropy and information. We
simply think of each bit as being located in a physical system, with perhaps
a great many degrees of freedom, in addition to the relevant one.” (p. 187)

The ‘other writings’ he refers to is Shannon’s work. We have seen that Shannon means a
very particular thing by information. Although not explicitly defined, Landauer intends
information to be the bit value or string of bit values. Neither is more correct than the
other, they just mean different things by the same word.

By way of concluding this Section, recall what we concluded in Section 2 namely: the
thermodynamic entropy does not rely on any information-related concept in its definition
or motivation. Landauer’s ideas have linked the thermodynamic entropy and information
in a curious way although they have drawn a great deal of interest and controversy from
the physical and philosophical community. See Ladyman et al. (2007), Maroney (2005),
and Norton (2005) and references therein for further in-depth discussion of these issues.

7 Entropy and information in quantum theory

It remains to discuss entropy in quantum theory and its link with information. Devel-
opments in this field have happened relatively recently, with quantum theory getting its
mathematical rigour with von Neumann’s Mathematical Foundations of Quantum Me-
chanics in the beginnings of the twentieth century and then with the field of quantum
information emerging towards the end. We cannot hope to do justice to the whole of
this enormous and growing field. We will content ourselves with highlighting some of
the major developments and issues.

The quantum analogue of entropy was introduced by von Neumann (1955) and is
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now known as the von Neumann entropy defined as:

S(p) = =Tr(plnp) (14)

In order to understand this formula, we need to introduce some formalism and defini-
tions. p = >, pil1hi) (] is the density operator of the ensemble of states {|t/;)} with
probabilities {p;} and describes the state of a quantum system. p is said to be pure if
p; = 1 for state i the system and mized otherwise?”. The density operator encodes the
probability of an outcome of a measurement on the quantum system. Tr is the trace
operation. The trace of operator A is defined as TrA := ) (n|A|n) where |n) is an
orthonormal basis of the Hilbert space. If p is maximally mixed, i.e. all the p; are the
same, then S(p) takes on its maximum value. If p is pure it takes its minimum value®.

Von Neumann arrives at his expression for the entropy by running a thermodynamic-
style argument: he considers the cyclic transformation of the state of a quantum gas®’
and argues that, since entropy is a function only of the state of the gas as it is in
thermodynamics, whatever expression it has, it must have value zero at the end of the
cyclic transformation. Von Neumann showed that the only expression for the entropy
which does this is given by —Trpln p. For the details of this argument, see von Neumann
(1955, pp. 358-379) or Petz (2001). Von Neumann’s correspondnace between his entropy
and the thermodynamic entropy has been critised: see Hemmo and Shenker (2006) and
references therein for this debate.

We can see that it bears great formal similarity to the statistical mechanical expres-
sions for entropy and to the Shannon entropy. But this formal link is not sufficient to
establish a conceptual one. Such a conceptual link, first given by Schumacher (1995),
can be made between the von Neumann entropy and the Shannon entropy, thus putting
the von Neumann entropy to use in information theory, giving rise to quantum informa-
tion theory. For a detailed overview of quantum information theory, see Timpson (2013,
Ch. 3). To motivate the idea of quantum information theory somewhat: a classical bit
can be in one of two states: 0 or 1. These might be physically realised by some sort of
electronic switch that can either be on or off. A quantum bit (qubit) can be in states
denoted by |0) and |1). But since a linear combination of quantum states is also a quan-
tum state, the fully general state of a qubit can be written as the linear superposition
al0) 4+ B|1) where o and 8 are complex numbers whose squares are interpreted as the
probability that the qubit is measured to be in state |0) or |1). Qubits may be physically
realised by, for example, an atom’s spin along an axis; the state of the atom is then either
spin up or spin down or a linear superposition of the two. Therefore, while a classical
bit can only be in one of two states, a qubit can occupy a continuum of states and so, in

27. We can further disambiguate mixed states into proper and improper mixtures. The probabilities
in the former can be given an ignorance interpretation while the latter cannot. This distinction is due
to D’Espagnat (2018).

28. Note that this corresponds to a property of the Shannon entropy we have already noted, namely
that if all the probabilities are equal, the Shannon entropy is 1 and if one of the probabilities is equal to
one and the the rest are zero, then the entropy is 0.

29. This is a transformation of the quantum state of a gas such that the beginning and end states are
identical.
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a sense that can be made more precise, can contain and process more information. This
is one of the reasons for the excitement around quantum information.

To make the link with entropy: Schumacher proved the quantum version of Shannon’s
noiseless coding theorem which, roughly stated, places limits on the compression of data.
Just as the classical Shannon entropy gives us a measure of how much the output of the
source may be compressed (see Section 4), so the von Neumann entropy analogously
provides a measure in the case of quantum information.

8 Conclusion

This article has discussed the concepts of, and links between, entropy and information
in the context of thermodynamics, statistical mechanics, dynamical systems theory, in-
formation theory, computation theory and quantum theory. What we have seen is the
extremely multi-faceted and pervasive nature of the concept of entropy. Some of its ex-
tensions into other areas of study are not all that surprising; statistical mechanics, viewed
as an attempt to reduce the theory of thermodynamics to the mechanics of atoms, is
a natural home for an extension of the concept of thermodynamic entropy. But from
statistical mechanics, entropy spread into a number of apparently unconnected domains.
The first really striking example of this was in Shannon’s work in communication the-
ory, whose expression for the amount of information in a source bears uncanny formal
similarity to the expressions for entropy in statistical mechanics. While it was possible,
before the rise of information theory, to interpret the statistical mechanical entropies in
terms of an every day concept of information, it also became possible retrospectively,
to interpret the statistical mechanical entropies in terms of Shannon’s technical concept
of information. While these interpretations are related insofar as Shannon information
does capture some aspects of everyday information, there are other features they do not
share, and we would do well to clearly distinguish between these two interpretations of
the statistical mechanical entropies, not least because the everyday sense of information
is not at all precisely defined. We also saw Shannon’s ideas making roads into quantum
theory via the work of Schumacher which led to the field of quantum information theory.
Yet another sense of information arose with the discussion of Landauer’s principle and
Bennett’s use of it to exorcise Maxwell’s demon. Landauer did not precisely define the
concept of information he used, but it seems slightly more precise than the everyday
concept but not quite so precise as Shannon’s. Indeed Landauer, insofar as he defined
information at all, explicitly distanced his idea of it from Shannon’s. This discussion
highlighted the link that Landauer’s principle purportedly makes between information
and the thermodynamic entropy, something that seems quite surprising, given that no
hint of information was present in the development of the thermodynamic entropy.
Much philosophical and clarificatory work remains to be done. The senses in which
the statistical mechanical entropies reduce the thermodynamic entropy is still very much
an open question. Related to this are questions concerning the relation between the
Boltzmann and Gibbs versions of statistical mechanics®® and making the notion of re-

30. See Frigg and Werndl (2019) for a recent proposal on this front.
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duction more clear and precise. Then there is the question of the role of information
theory in statistical mechanics, first proposed by Jaynes; can this be made into a success-
ful and coherent reinterpretation of classical statistical mechanics? Finally, the contro-
versy of the status of Landauer’s principle and its connection with thermodynamics and
Maxwell’s demon is still live. All of this, together with the work that is being done in
the emerging field of quantum information and computation, indicates much interesting
work still to be done.
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